skip to main content


Search for: All records

Creators/Authors contains: "Evans, David"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We study indiscriminate poisoning for linear learners where an adversary injects a few crafted examples into the training data with the goal of forcing the induced model to incur higher test error. Inspired by the observation that linear learners on some datasets are able to resist the best known attacks even without any defenses, we further investigate whether datasets can be inherently robust to indiscriminate poisoning attacks for linear learners. For theoretical Gaussian distributions, we rigorously characterize the behavior of an optimal poisoning attack, defined as the poisoning strategy that attains the maximum risk of the induced model at a given poisoning budget. Our results prove that linear learners can indeed be robust to indiscriminate poisoning if the class-wise data distributions are well-separated with low variance and the size of the constraint set containing all permissible poisoning points is also small. These findings largely explain the drastic variation in empirical attack performance of the state-of-the-art poisoning attacks on linear learners across benchmark datasets, making an important initial step towards understanding the underlying reasons some learning tasks are vulnerable to data poisoning attacks. 
    more » « less
    Free, publicly-accessible full text available December 11, 2024
  2. In this article, we present a detailed review of current practices and state-of-the-art methodologies in the field of differential privacy (DP), with a focus of advancing DP’s deployment in real-world applications. Key points and high-level contents of the article were originated from the discussions from “Differential Privacy (DP): Challenges Towards the Next Frontier,” a workshop held in July 2022 with experts from industry, academia, and the public sector seeking answers to broad questions pertaining to privacy and its implications in the design of industry-grade systems.This article aims to provide a reference point for the algorithmic and design decisions within the realm of privacy, highlighting important challenges and potential research directions. Covering a wide spectrum of topics, this article delves into the infrastructure needs for designing private systems, methods for achieving better privacy/utility trade-offs, performing privacy attacks and auditing, as well as communicating privacy with broader audiences and stakeholders. 
    more » « less
    Free, publicly-accessible full text available January 31, 2025
  3. Free, publicly-accessible full text available July 10, 2024
  4. Free, publicly-accessible full text available May 8, 2024
  5. Abstract—A distribution inference attack aims to infer statistical properties of data used to train machine learning models. These attacks are sometimes surprisingly potent, but the factors that impact distribution inference risk are not well understood and demonstrated attacks often rely on strong and unrealistic assumptions such as full knowledge of training environments even in supposedly black-box threat scenarios. To improve understanding of distribution inference risks, we develop a new black-box attack that even outperforms the best known white-box attack in most settings. Using this new attack, we evaluate distribution inference risk while relaxing a variety of assumptions about the adversary’s knowledge under black-box access, like known model architectures and label-only access. Finally, we evaluate the effectiveness of previously proposed defenses and introduce new defenses. We find that although noise-based defenses appear to be ineffective, a simple re-sampling defense can be highly effective. I 
    more » « less
  6. —A distribution inference attack aims to infer statistical properties of data used to train machine learning models. These attacks are sometimes surprisingly potent, but the factors that impact distribution inference risk are not well understood and demonstrated attacks often rely on strong and unrealistic assumptions such as full knowledge of training environments even in supposedly black-box threat scenarios. To improve understanding of distribution inference risks, we develop a new black-box attack that even outperforms the best known white-box attack in most settings. Using this new attack, we evaluate distribution inference risk while relaxing a variety of assumptions about the adversary’s knowledge under black-box access, like known model architectures and label-only access. Finally, we evaluate the effectiveness of previously proposed defenses and introduce new defenses. We find that although noise-based defenses appear to be ineffective, a simple re-sampling defense can be highly effective. 
    more » « less
  7. Distribution inference, sometimes called property inference, infers statistical properties about a training set from access to a model trained on that data. Distribution inference attacks can pose serious risks when models are trained on private data, but are difficult to distinguish from the intrinsic purpose of statistical machine learning—namely, to produce models that capture statistical properties about a distribution. Motivated by Yeom et al.’s membership inference framework, we propose a formal definition of distribution inference attacks general enough to describe a broad class of attacks distinguishing between possible training distributions. We show how our definition captures previous ratio-based inference attacks as well as new kinds of attack including revealing the average node degree or clustering coefficient of training graphs. To understand distribution inference risks, we introduce a metric that quantifies observed leakage by relating it to the leakage that would occur if samples from the training distribution were provided directly to the adversary. We report on a series of experiments across a range of different distributions using both novel black-box attacks and improved versions of the state-of-the-art white-box attacks. Our results show that inexpensive attacks are often as effective as expensive meta-classifier attacks, and that there are surprising asymmetries in the effectiveness of attacks.

     
    more » « less